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Settling of a dilute, monodisperse suspension between two inclined, narrowly spaced 
parallel plates is considered. Effects of sediment motion are accounted for. 
Lubrication theory and a simplified model for the particle motion lead to a system 
of two coupled nonlinear hyperbolic equations for the evolution of the two interfaces 
between clear fluid, suspension and sediment. Two problems are solved : batch 
settling and the filling of a channel that initially contains clear fluid. In the batch- 
settling case, the sediment has no major qualitative effect on the motion. In  the 
filling problem, however, effects of sediment are important. 

1. Introduction 
Settling of a suspension in a tilted channel is a phenomenon that has attracted 

some attention during the last years. Detailed accounts of the history of the subject 
and its technological applications have been given by, among others, Acrivos & 
Herbolzheimer (1979), Davis & Acrivos (1985) and Amberg et al. (1986) to which the 
reader is referred for a complete exposition of the background to the present work. 
Here only a brief review of recent papers that are directly related to the problem will 
be given. 

Acrivos & Herbolzheimer (1979) treated, both experimentally and theoretically, 
the time dependent settling of a suspension in a closed inclined vessel having an 
aspect ratio of order unity. In the parameter range considered, the clarified fluid 
forms a thin viscous boundary layer on the downward facing wall. The motion of the 
suspension outside this layer is slower and inertia dominated. In  a later paper 
(Herbolzheimer &, Acrivos 1981), the same problem is investigated for a narrow 
channel where the whole flow is viscously dominated. 

In both these articles all effects of the particles that accumulate on the lower wall 
were neglected. It was assumed that, for the small concentrations considered, the 
sediment layer is sufficiently thin to be dynamically unimportant. It is the purpose 
of the present paper to include, in a simplified way, effects of the sediment in the 
analysis for a narrow channel. 

Schneider (1982) investigated the Boycott effect in another parameter range where 
the force balance in both the clarified fluid and the suspension is between inertia and 
buoyancy. In  this limit he was able to relax the assumption made in Acrivos & 
Herbolzheimer (1979) and Herbolzheimer & Acrivos (1981) that the concentration 
remains uniform. Concentration waves, of the same type as those found by Kynch 
(1952) in his classical study of vertical sedimentation could therefore be accounted 
for. Schneider considered time dependent settling in various vessels having inclined 



416 G. Amberg and A .  A .  Dahlkild 

walls and aspect ratios of order unity. The sediment was assumed to stick to upward 
facing walls and form a stationary layer of finite thickness. 

h u n g  & Probstein (1983), Probstein & Hicks (1978) and Probstein, Yung & Hicks 
(1977) investigated time independent settling in a narrow inclined channel where a 
suspension is fed continuously at the top or bottom end. These authors considered 
essentially the same strong buoyancy limit as that studied by Herbolzheimer & 
Acrivos (1981). The sediment layer was taken into account and treated as a 
Newtonian fluid. Only steady processes were discussed. In their experiments, 
Probstein, Yung & Hicks remarked that the attainment of a steady state was 
cumbersome, since the response time of their experimental apparatus was of the 
order of one hour. Thus an understanding of the transient approach to steady state, 
which is attempted in this work, should be of practical importance even though the 
desired final state is steady. 

In the present work, effects of sediment on some unsteady settling processes are 
considered. The same type of vessels and the same dynamical parameter range as 
considered by Herbolzheimer & Acrivos (1981) is treated. The paper can be seen as 
a unification and extension of the theories by Probstein & Hicks (1978) and 
Herbolzheimer & Acrivos. 

The paper is planned as follows: In  $2 the basic assumptions are stated and the 
basic equations given. A system of two nonlinear hyperbolic equations of first order 
for the evolution of the two interfaces between clear fluid, suspension and sediment 
is derived. Section 3 treats batch settling. The equations derived in $ 2  are solved 
numerically and the solutions discussed. In $4 the filling (with suspension) of a vessel 
that initially contains clear fluid is considered. Numerical solutions and an 
approximate solution for small-volume fractions are given. Section 5 contains some 
concluding remarks. 

2. Formulation 
The two-dimensional unsteady motion of a settling two-phase fluid will be 

considered. The fluid is contained between two parallel plates of length 1 ,  which are 
inclined at an angle a with the direction of gravity, see figure 1. The distance between 
the plates is 2h with h 4 1 .  The ends of the channel may be either closed or open. In  
the latter case, a net flux of suspension into the channel through the lower end is 
prescribed. 

During the settling of the suspension, three distinct fluid layers form. A layer of 
clear fluid appears adjacent to the upper plate whereas a layer of sediment builds up 
at  the bottom of the channel. The space between these two layers is occupied by 
suspension. The fluids in all three layers are assumed to behave as incompressible 
Newtonian fluids with constant (but different) properties?. This assumption may be 
reasonably well justified if the suspended particles are incompressible droplets with 
uniform radii, which coalesce into a continuous layer of fluid at the bottom plate. 

If this description is to be realistic, a droplet is required to coalesce readily with 
the sediment layer at the suspension-sediment interface, but not with other droplets 
in the bulk of the suspension. The validity of this assumption is discussed in the 
Appendix. 

t For the suspension, this meana that the concentration of particles must be uniform. This 
matter is briefly discussed later. 
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FIGURE 1. The geometry of the container. 

Conversely, the particles may be assumed to be solid spheres. The suspension and 
the clear fluid can then be treated as Newtonian fluids (at least for moderate volume 
fractions up to approximately 20 %), but it is not obvious that the sediment can be 
described by such a simple model. Probstein et al. (1977) and h u n g  & Probstein 
(1983) modelled sediment consisting of solid particles as a Newtonian fluid and found 
fair agreement with experiments. In the following we will primarily consider a 
suspension of droplets. The viscosities of the three layers can then be expected to be 
roughly the same if the viscosities of droplets and suspending liquid are 
approximately equal. The modifications necessary to treat the case where the 
viscosity of the sediment is much higher than that of the other two layers, as could 
be expected for a suspension of solid particles, will be discussed when appropriate. 

The droplets or particles are assumed to have equal radii. The settling of 
polydisperse suspensions has been treated by Greenspan & Ungarish (1982), and 
Davis, Herbolzheimer & Acrives (1982), but this complication is not considered here. 
The bulk average of the velocity I( of the suspension is given by the formula 

I( = cud+ (1-c) I(f. (2.1) 

Here c denotes the volume fraction of droplets, ud droplet velocity, and uf the 
velocity of the continuous fluid phase. For the settling velocity, i.e. the velocity of 
the droplets relative to the bulk average velocity of the suspension, the following 
empirical formula is used 

u d - u  = eg' eg = g/kl* (2.2) 
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Us is the settling velocity of a single droplet falling freely through quiescent fluid (see 
e.g. Batchelor 1967, p. 236):  

Here a denotes the droplet radius, p viscosity and p density. Index d refers to the 
liquid in the dispersed droplets and index f to the suspending fluid. The formula (2.3) 
is accurate when the Reynolds number based on particle size (2aUpf/p,) is less than 
unity. In the derivation of (2.3), it is also assumed that the droplets are spherical. For 
a single droplet in quiescent fluid, this is true if the Reynolds numbers of the flow 
around and inside a droplet are small, or the surface tension is strong enough to keep 
the droplet spherical. In the presence of shear in the bulk flow, a finite surface tension 
is required to prevent rupture of the drop. Here we will assume that the droplet 
Reynolds number is small and that the surface tension is such that the droplets are 
spherical and (2 .3)  holds. In practice it is often observed that, due to surface 
impurities on the droplet surface, the sedimentation velocity of droplets follows 
Stokes law (equation (2.3) with pd/pf = 00)  instead of (2 .3) .  Such effects are also 
disregarded here. 

In (2 .2) ,  f(c) denotes a non-dimensional function that accounts for particle 
interactions. f(c) < f(0) = 1 for c > 0 so that the average settling velocity is lower in 
a suspension of finite concentration than in a very dilute one. For a suspension of 
solid particles, a commonly used empirical correlation has been given by Richardson 
& Zaki (1954). Ishii & Chawla (1979) have given a relation that correlates 
sedimentation velocities in both droplet and solid-particle suspensions. 

The equations of motion are made non-dimensional with the following scales : 
time h/U,  f(co) sin a 

lU,f(c,) sin a /h  

Usf(co) sin a 

length in the 2-direction I 

length in the y-direction h 
velocity in the 2-direction 

velocity in the y-direction 
pressure pU,f(c,) sin a P/h3 

droplet volume fraction co 

The typical concentration co is chosen as the initial value in the batch-settling case, 
or as the concentration of the feed in the problem where a net volume flux between 
the plates is considered. The latter case will henceforth be referred to as the filling 
problem. 

In the cases to be studied in the present work, the parameter 

is large, typically approximately lo'. A is the ratio between a Grashof number and 
a sedimentation Reynolds number. The channel is assumed to be narrow in the sense 
that h/l = O(A-i). Such cases are common in applications. The following additional 
non-dimensional parameters will appear 

Pd lUs f ( c O )  sin a R =  7 

P 
h 

1 
24 t ana '  

K = i 7  

gcO(Pd-pf) " = K3A ' = 24p1U,f(c0) tan a 
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R is a Reynolds number based on the length of the channel and the settling velocity. 
b is an estimate of the number of channel widths that a droplet is advected by the 
buoyancy-driven motion. As in Herbolzheimer & Acrivos (1981), the equations of 
motion will be considered in the limit 

K + O ,  

KR .+ 0, 
/3 = O(1). 

In the following we will take the viscosities of clear fluid, suspension and sediment 
to be the same. If the viscosities of the dispersed droplets and the continuous phase 
are equal, and if the droplets coalesce to a homogeneous film in the sediment layer, 
this is a fair approximation. The clarified layer and the coalesced sediment layer then 
have equal viscosities. The viscosity of the suspension is higher than that of the 
constituents. According to the correlation of Ishii & Chawla (1979), the suspension 
viscosity is 20 YO higher than the continuous phase viscosity for 10 YO volume fraction 
of droplets. 

For a suspension of solid particles the sediment is more difficult to describe. h u n g  
& Probstein (1983) and Probatein et a2. (1977) described the sediment as a Newtonian 
fluid and found reasonable agreement with experiments. Probstein et al. reported an 
experimental value of 0.042 for the ratio of the viscosities of clear fluid and sediment. 
At  10 YO volume fraction the viscosity in the bulk suspension is 30 YO higher than the 
clear fluid viscosity according to the correlation of Ishii L Chawla. In  order to 
minimize the number of free parameters and to formulate a simple model problem we 
have taken the viscosities to be equal in the three layers. In an investigation of a 
more detailed model for describing the motion of the three layers, Dahlkild has 
investigated effects of different viscosities. These results will be presented in a 
forthcoming paper. The effect of a more viscous sediment layer is discussed 
qualitatively here in connection to the solutions of the different flow cases. 

With the assumption that the viscosities are equal in the three layers, the non- 
dimensional equations of motion can be written : 

O(KR) = - p ,  + uyy + 24&6 - l), 

O ( K )  = - P v .  

( 2 . 4 ~ )  

(2.4b) 

Here # = c/c, is the scaled volume fraction of drops and u is the 2-component of the 
bulk average velocity. 

As both droplets and the continuous phase of the suspension are incompressible, 
the bulk velocity field is solenoidal, i.e. 

u, + Vy = 0. 

The net volume flux is: 

where Q* is the prescribed dimensional volume flux per unit length in the lateral 
direction. In the batch case Q = 0 whereas in the filling problem Q - 1. The 
dimensional equation for the conservation of droplets reads : 

c,+v * (cud) = 0. 
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d 
ct+{u+egUs-(cf(c))}~ dc Vc = 0. (2.7 1 

This equation implies that an unbounded, initially uniform suspension remains 
uniform. In the presence of boundaries, a continuous concentration variation may 
appear in the suspension adjacent to the sediment, if the initial concentration is 
sufficiently large (Kynch 1952 ; Schneider 1982). In the present work, it is assumed 
that concentration changes are discontinuous, i.e. the concentration in the suspension 
is constant ( = co). The conditions that have to be imposed on the functionf(c) for this 
to be true are discussed in detail by Amberg et al. (1986). 

In order to compute the motion of the settling suspension one needs, in addition 
to (2.4a,b) and (2.5), two equations for the positions of the interfaces 

y = ql(x, t )  
y = q2(x,  t )  

between clear fluid and suspension, 
between suspension and sediment. 

These equations are derived from the continuity of clarified liquid in the top layer 
and, likewise, continuity of sediment in the lower layer. Due to the sedimentation, 
clear fluid and sediment are produced at the upper and lower interfaces, respectively. 
This production must be balanced either by a flux gradient in the respective layer, 
or by a thickening of the layer. The derivation is discussed in more detail by Amberg 
et al. (1986). The result is: 

Tlt-Qlz = - 1 9  ( 2 . 8 ~ )  

where q1 = I ' udy ,  q2 = r;udY. 
81 

(2.8b) 

The fluxes q1 and qz can be expressed as explicit functions of ql and qz.  This is done 
by calculating u(y, ql, q 2 )  from (2.4) in the regions 

1 > y > ql with qi = 0, 
ql > y > q2 with qi = 1, 

qz > y > -1  with qi = l/co, 

and determining the constants of integration from the flux condition (2.6) and the 
boundary conditions (u = 0 on y = & 1 and u, uy continuous at  y = ql, qz) .  After some 
algebra one finds 

( 2 . 9 ~ )  

(2.9b) 

Q1 = -Oh(U,)-B{S(r,)-; 1 4wd},  

Pz = -&h(r12) +B{;dlln) - 4% ")}, 1 

where h(q)  = - ; ( 2 + ~ )  (1-qI2, (2.10) 

(2.11) 

K ( v ~ , v ~ )  = (1+rz)2(1-r11)2(3-(2+41)(2-rlz)). (2.12) 
s(7) = (1 +r1I3(1 - r ) S I  

The structure of the expressions (2.9a,b) for q1 and qz should be noted. Effects of 
buoyancy enter only in the second terms whereas the first terms depend only on the 
imposed net volume flux between the plates or, which is equivalent, on the pressure 
drop between the open ends of the container. 
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In subsequent sections the system (2.8a,b) will be solved numerically and, in the 
filling problem, by a perturbation procedure. Boundary and initial conditions will be 
discussed separately for the caaes considered. 

3. Batch settling 
In the batch-settling case the container is closed (Q = 0). Initially it is Bled with 

a uniform suspension. Infinitesimal layers of clear liquid and sediment appear 
immediately at the top and bottom walls, cf. Kynch (1952). The initial condition for 
the solution ql ,q2  of (2.8) is in this case 

Vl(Z,O) = 1, 

q 2 ( x , 0 )  = -1  (0 < z c 1, t = 0) .  (3.1) 

As seen from (2.8), the rate of production of clear fluid per unit length is 1 and the 
rate of sediment deposition is E .  This means that no significant production of clear 
fluid or sediment can take place over the short end regions z = O(K) and z = 1 - O(K),  
where (2.8) is formally invalid. Thus, the volume fluxes of clear liquid, suspension 
and sediment must vanish separately at z = 0 , l .  The formulae (2.9a,b) then imply 
that q1 = f 1, q2 = f 1 there. By analogy with the solution for the case where the 
sediment is neglected (Herbolzheimer & Acrivos 1981), it can be seen that the signs 
should be chosen as 

q1(0, t )  = q2(0, t )  = - 1 (z = 0 ,  t > O ) ,  

q1(1 , t )  = q*( l , t )  = 1 (z = 1, t > 0) .  (3.2) 

Equation (2.8), with the initial condition (3.1) and the boundary condition (3.2), 
appear to define a well-posed hyperbolic problem. It was solved numerically using 
the scheme given by Roe (1981). 

A disturbing property of the system (2.8a,b) is that, for certain combinations of 
values of q1 and q2, the characteristic velocities of the system are complex. The 
problem is consequently ill-posed. The physical reason for this troublesome state of 
affairs is that the stratified quasi-parallel three-layer flow in the container is linearly 
unstable for wavelike disturbances of infinite wavelength. However, even if the 
system (2.8) is formally ill-posed, the consequences are not very serious due to two 
circumstances. Firstly, the regions in the (ql, qa)-plane where the characteristics are 
complex are small, see figure 2. Secondly, the growth rate for unstable disturbances 
can be shown to be small, typically less than 0.1. In general, the motion will therefore 
be subject to a weak instability during a small time interval. The net effect of the 
instability can thus, on reasonable grounds, be expected to be small. In  the numerical 
computations the characteristic roots of the system (2.8) were slightly adjusted to 
real values in the unstable regions shown in figure 2. Numerical experiments with 
different schemes for adjustment showed very small differences in the solution. 

A more satisfactory way of eliminating the difficulties associated with complex 
characteristics would be to include weak diffusive effects in (2.8) aa outlined in 
Amberg et al. (1986) (the text preceding equation (2.33)). This leads to a well-posed 
parabolic problem. Work on this problem is in progress and preliminary results 
confirm the results obtained by the ad ?wc method used here. 

Figure 3 shows a numerical solution with the parameter setting co = 0.01 and 
/3 = 0.25. The sequence of graphs shows the shapes of the layers of clear fluid (white), 
suspension (grey) and sediment (black) at different times. The timescale is such that 
a particle would fall across the channel in two time units in the absence of buoyancy- 
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1 
1 

- 1  

FIGURE 2. The (ql,qa)-plane shown for the parameter values Q = 0, 6 = 1. The shaded area 
mark regions where the characteristic velocities are complex. 

driven motion of the bulk. It should be noted that the channel width is exaggerated 
in figures 3, 4, 6, 7 and 8. A true width to length ratio is K = 0.01 typically. The 
lubrication theory approximations made in $2 mean that variations of lengthscale 
O(K)  in the solution are not resolved. A discontinuity (shock) of ql, as shown in figure 
3, is thus a model for a finite variation of ql over a short distance of order K in the 
x-direction. 

In the batch case the parameter /3 may be interpreted as a lengthscale. This may 
be seen from (2.8) with Q = 0, from which /3 may be removed by introducing x l B  as 
a new length variable. For the two-layer case it may also be inferred from the 
corresponding equation, i.e. ( 2 . 8 ~ ~ )  with q2 = - 1, that /3 is the maximum non- 
dimensional distance over which the lower end is felt (Amberg et al. (1986). With 
effects of sediment this is only approximately true. 

The process shown in figure 3 starts a t  time t = 0 (not shown) when the entire 
container is filled with a suspension of uniform concentration. At time 0.4 a layer of 
light, clear fluid flowing upwards (to the right in figure 3) has formed beneath the 
downward facing wall. A very thin layer of sediment has accumulated on the upward 
facing lower wall and flows very slowly downwards (to the left). For the small 
concentration considered, the layer of sediment is hardly visible in the gnaphs. At  
t = 0.8 the clear layer has grown thicker. Some distance away from the ends the 
interface between clear fluid and suspension is parallel to the walls and moves with 
constant velocity towards the lower wall. At the upper end, a shock propagating 
downwards is formed immediately. Above this shock the clear fluid that flows 
upwards beneath the downward facing wall is collected. There is also a small, 
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FIGURE 3. Numerical solution for the batch c a w  shown at times t = 0.4, 0.8, 1.2, 1.6, 2.8. The 
parameter setting is c,, = 0.01, /3 = 0.26, Q = 0. 

approximately triangular region of suspension left above it. This region increases in 
length and height until t = 1.6 when the shock disappears. 

Near the lower end the interface between clear fluid and suspension attains, to 
lowest order in c,,, a steady shape, which increases in length until t = 1. In the case 
shown in figure 3, the maximum length of the almost steady part of the interface is 
very close to B = 0.25. For t > 1 a shock appears which grows in strength and 
propagates downwards. At t = 2 the straight part of the interface outside the end 
regions reaches the lower wall. A more detailed discussion of this scenario is given by 
Herbolzheimer & Acrivos (1981). After time t = 2, most of the channel contains only 
clear fluid and a thin film of sediment on the upward facing wall. This film is slowly 
seeping downwards, its thickness approaching zero asymptotically. The timescale for 
this motion is O(l /s ) .  
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F’IQURE 4. Numerical solution for the batch case with larger effects of sediment. The 
parameters are c,, = 0.24, /I = 0.25, Q = 0. 

A t  the low concentration in figure 3, the sediment is, of course, hardly visible a t  all 
in the graphs, and has a negligible dynamical effect. The numerical solution agrees 
very well with the analytical solution given by Herbolzheimer & Acrivos (1981), who 
neglected the sediment, except for one discrepancy. The difference concerns the finite 
region of suspension left behind the upper shock. This matter is discussed in some 
detail by Amberg et at. (1986), who corrected the solution given by Herbolzheimer & 
Acrivos in this respect. The present numerical solution of the three-layer problem 
agrees excellently with the analytical solution of the two-layer problem given by 
Amberg et al. (1986). 

Figure 4 shows a case where the sediment cannot be neglected (c,, = 0.24). The 
value of /3 (=  0.25) is the same as in figure 3, i.e. the ratio between the buoyancy- 
driven velocity and the settling velocity is approximately the same. One may say 
that there are two additional effects caused by the presence of a finite amount of 
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sediment. Firstly, the motion of the sediment will be appreciable, which means that 
the shear stress at  the interface between sediment and suspension will tend to drag 
the suspension towards the lower end of the container. Secondly, the growing 
thickness of the layer of sediment will squeeze the clear fluid and suspension towards 
the downward facing wall. 

It can be seen from figure 4 that the principal features of the process are quite 
similar to those shown in figure 3. Near the lower end, the shape of the clear 
fluid-suspension interface is now only approximately steady due to the additional 
effects mentioned above. Also, the accumulated sediment at  the lower end acts as a 
moving boundary so that the quasi-steady shape is displaced upwards. Outside the 
end regions, there is also some distortion of the clear fluid-suspension interface 
compared to the case shown in figure 3. This distortion is caused by a viscously 
dominated gravity wave, which is propagating downwards from the upper end on the 
suspension-sediment interface. Another effect is that the growing thickness of the 
sediment layer shortens the path of fall of the droplets on the clear fluid-suspension 
interface and thus reduces the non-dimensional time for settling outside the end 
regions. 

The two shocks that appear in the case shown in figure 3 have counterparts in 
figure 4. The general behaviour of these shocks is quite similar in the two cases. In 
figure 4 however, an additional shock appears due to the accumulation of sediment 
in the lower end of the container. 

In  a case where the sediment is much more viscous than the clear fluid and the 
suspension, the process is somewhat different. The most important effect is that the 
flux in the sediment layer is decreased, i.e. the sediment flows down the lower plate 
more slowly. In  the limit of a very viscous sediment, the suspension first settles into 
an almost stationary sediment layer of uniform thickness (in a time x 2). During this 
time the sediment layer is felt only through the decreasing width of the space 
occupied by suspension and clear fluid. The sediment layer then flows slowly down 
the inclined plate to the lower end of the channel. The timescale of this motion can 
be shown to be ,us/(,uf /3c,(l -c,)) (,us = effective sediment viscosity, ,uf = clear fluid 
viscosity). This is analogous to the case with equal viscosities in all three layers 
and a very low volume fraction co that was discussed above (c, 4 1, ,us = pf, 
/3 = 0(1)) ,  where the time required for the sediment to reach the lower end is of 
order l / c  x l/co. 

4. The filling problem 
In this section, a container with open ends and a prescribed net volume flux Q + 0 

between the plates at y = f 1 is considered. At time t = 0, the container is filled 
with clear fluid and suspension of uniform concentration c,, is pumped into the 
container at the lower end. The volumetric flux Q < 0 at x = 1 is assumed to be 
constant and the transient motion of the suspension that enters the container will be 
computed. The corresponding problem in cases where the sediment can be neglected 
has been treated by Amberg et al. (1986, $4). The appropriate initial condition is 

?Ir(%, 0) = ?Iz(%, 0) = - 1 (0 < x < 1). (4.1) 

The formulation of boundary conditions at  x = 0 , l  is not trivial and requires some 
consideration. By assumption, no clear fluid or sediment enters the container at x = 1.  
However, the sediment that after some time has settled in x < 1 may well flow 
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t 

t 

x = l  X x = l  X 

FIGURE 5. Schematic sketch of the characteristics in the immediate vicinity of the inlet, z = 1, for 
two cases where: (a) both q1 and q2 should be prescribed at z = 1, (b) only T~ should be prescribed 
at z = 1. Characteristics of -, the A-family ; ...... the B-family. 

downwards and leavet the container a t  x = 1. Another possibility is that all sediment 
leaves the container at x = 0. In the former case, the location of the interface 
between sediment and suspension at  x = 1 depends on the solution in x < 1 and can 
obviously not be prescribed. In the latter case, one obviously has qz( 1, t )  = - 1. The 
number of boundary conditions that can be prescribed at x = 1 thus depends on the 
solution. More precisely, if both characteristics of the system (2.8) for a given value 
oft are running into the region x < 1 from x = 1, two boundary conditions must be 
prescribed at this value of x. Figure 5 (a)  shows schematically the characteristics in 
the immediate vicinity of the inlet for such a case. This situation always prevails 
initially. On the other hand, if only one characteristic enters x < 1 from x = 1 for a 
given value oft, only one boundary condition can be prescribed at x = 1. In certain 
cases this may occur after a finite time and a typical case is shown in figure 5(b ) .  

In all cases considered in this work, both characteristics are at x = 0 running out 
from the region x > 0. No boundary condition can therefore be prescribed a t  x = 0. 

In summary, the following boundary conditions are prescribed : 

V l ( 1 , t )  = 1, rz(1,t) = -1, (4.2) 

where the second condition has to be omitted if only one characteristic enters the 
region x < 1 at x = 1. No boundary condition is specified at  x = 0. 

Note that the use of the lubrication approximation, which yields the flux 
expressions (2.9), has also reduced the number of boundary conditions that are 
possible to impose on the flow. With the full NavierStokes equations, the velocities 
and the interface positions would be specified independently at inlet and outlet. 
Rubinstein (1980) analysed this problem and found that for small Reynolds 

t Note that this flux of sediment is included in &. 
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FIQURE 0. Numerical salution for the filling p & m  shown at times t = 1, 2, 3, 0, 10. The 
parameter setting, co = 0.091, /? = f, Q = 0.8, is such that the sediment leaves the container a t  
x =  1. 

numbers, the thickness of the layers are quickly adjusted (within a length 
approximately equal to the channel width) to those given by the fluxes (2.9) 
according to lubrication theory. Thus, if the inlet or outlet is constructed so that the 
layer thicknesses are not compatible with (2.9), Rubinstein’s analysis shows that the 
resulting distortion of the interface can extend at most a distance approximately 
equal to the channel width into the channel. Beyond that position, the relations (2.9) 
between layer thicknesses and fluxes hold. 

The filling problem considered in this section was solved numerically using the 
scheme? given by Engquist & Osher (1981). An analytical solution obtained by 
perturbation methods will be given later in this section. At each timestep, the 

t The EngquiseOsher scheme turned out to require excessive amounts of computer time for 
the batch-settling problem treated in the previous section. The numerical solution of that problem 
therefore had to be reconsidered by using Roe’s scheme. 
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FIQURE 7. Numerical solution for the filling problem in a caae where the sediment goes out at 
z = 0. The parameter setting is c,, = 0.091, /? = &, Q = 0.8. 

direction of the characteristics at x = 1 was computed in order to determine the 
correct number of boundary conditions to be imposed at x = 1. In the case when only 
one boundary condition is imposed at x = 1, the scheme is such that, in order to 
compute the solution at time t + A t ,  the value of r ] ,  at a fictitious point just outside 
the lower end is needed at time t .  This value is obtained from the solution in x < 1 
by taking ql = 1 and discretizing (2 .8b)  with one-sided differences. 

Figure 6 shows the evolution to a steady state for the parameter values 8 = 0.1, 

region occupied by suspension in the steady state (cf. Amberg et al. 1986, $4). For the 
case shown in figure 6 this estimate of 1, is quite accurate at t = 10, when the clear 
fluid-suspension interface is steady and almost all sediment leaves the channel at the 
lower end. For the opposite case, where no sediment emerges at the lower end as 
shown in figure 7, one has instead 1, % I&I (1 -co). The value of /? is significantly 

B=' 24 and & = -0.8. The numerical value of I&I is an estimate of the length 1, of the 
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smaller than in the batch-settling case considered in the previous section which implies 
that the difference in density between clear fluid and suspension is here of minor 
importance. Buoyancy effects will only appear because the sediment is significantly 
heavier than the clear fluid and the suspension. 

The sequence shown in figure 6 indicates that the approach to a steady state occurs 
on two timescales. The interface between clear fluid and suspension is approximately 
steady for t 2 3. The sediment layer however, continues to grow for considerable time 
and is not steady until t > 10. In  the first three graphs, no sediment is leaving the 
channel and both boundary conditions (4.2) are imposed. However, at time t = 3 a 
shock has appeared on the interface between suspension and sediment. (The 
corresponding discontinuity on the other interface is too weak to be seen in the 
graphs.) This shock, which is a consequence of downward flow of heavy sediment, 
propagates downwards. After the inlet x = 1 is reached, one of the characteristic 
velocities changes sign and runs out from the region 2 < 1. Thus, only one boundary 
condition can be imposed at x = 1 for subsequent times. In this case effects of 
buoyancy eventually become sufficiently strong for the main part of the sediment to 
leave the container at the inlet. It can be shown that, after sufficiently long time, 
there is also a very small flux of sediment through the outlet. 

Figure 7 shows a case where the geometry of the channel and the values of c,, are 
the same as in figure 6 but the value of /3 is decreased by a factor of a half, i.e. /3 = & 
in figure 7. Initially, the flow is very similar to that shown in figure 6. However, 
because buoyancy effects are weaker in this case, the shock on the lower interface 
does not appear. The layer of sediment never becomes sufficiently heavy to slide 
downwards to the inlet but leaves the container at the outlet. Also in this case, two 
timescales govern the approach to the steady state. 

For a case with a very viscous sediment, such as in the sedimentation of a 
particulate suspension, the tendency of the sediment to be washed upwards is 
increased. As discussed in the text following (2.12), the sediment flux can be viewed 
as composed of one part due to the density differences and another due to the 
imposed volume flux through the channel. For a fairly thin and very viscous 
sediment layer, simple estimates show that the buoyancy induced flux is 
approximately /3/(ern), where rn = ps/pf, and the flux due to the imposed pressure 
gradient is approximately &/m. Thus the relative importance of buoyancy 0s. 
imposed pressure gradient would appear to be unchanged by an increased sediment 
viscosity. However, with increasing sediment viscosity, the sediment layer must 
grow thicker to carry the same flux. When the thickness of the layer increases, the 
imposed flux can increase up to the net flux & in the channel, but the magnitude of 
the buoyancy induced part is unchanged, approximately /3/(m). Thus, with 
increasing m and a sufficiently thick sediment layer, the downward buoyancy flux 
decreases, while the upward imposed flux can always accommodate the required 
sediment flux. 

h u n g  & Probstein (1983) have calculated the steady sedimentation in a 
continuously fed inclined container, using a three-layer model with a viscous 
sediment layer. They studied cases with fairly strong buoyancy, corresponding to 
/3 > 0.3. Here /3 has been chosen considerably smaller. For the comparatively large 
values of /3 used by h u n g  & Probstein, buoyancy is strong enough to make the 
sediment go out at the lower inlet end, despite the fact that the sediment is very 
viscous. 

The presence of two timescales which was noted in the discussion of figure 6, may 
be used to construct an approximate analytical solution as a perturbation expansion 
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in the small parameter E = co/(l  -co). It is seen from (2 .8b)  that only an O(E)  amount 
of sediment is produced per unit length during times of order unity. The sediment 
layer is then at most O ( E )  thick, i.e. vZ = - 1 +O(E) .  Thus (2.9b) shows that the 
sediment flux function q2 is O(e2) .  New 0(1) variables yz, q2 are defined as: 

q z  = E 2 V 2 ,  7 2  = - I + q 2 .  (4.3a, b)  

Introducing these into (2.8) one finds: 

71t-Plz = - 1 7  ? 2 t + Y e z  = 1. (4.4a, b) 

From (4.4b) it is evident that qz cannot be stationary on this timescale, since the 
main balance is between vet and the source term on the right-hand side. 

Non-dimensional times of order one, for which (4.4) are valid, represent the shorter 
of the two timescales in the problem. The longer timescale is the time required for 
1;12 to reach an approximately steady state. As seen from figures 6 and 7 there are two 
qualitatively different steady states. In the flow in figure 6 all the sediment comes out 
at  the bottom inlet end, while in figure 7 the sediment leaves the channel at the top 
outlet. Which of the two cases actually occurs is determined by the relative 
magnitudes of E and /3. In  the steady state the balanoe in equation (2 .8b)  is between 
qzz and E .  By considering the expression for qn in (2 .9b) ,  it  can be shown that the 
situation in figure 6 prevails if /3 B d ,  or more acourately B ei($&I)~/8. In  the 
opposite case, /3 Q &l&l)t/8, the case in figure 7 oocurs. In  the intermediate range, 
/3 x d(#&l)'/S, it is possible to adjust the parameters so that there is a significant 
efflux of sediment at  both ends. Note that consistency with the approximations made 
in $2 require that 8, 6 B K. 

In the remainder of this section, attention is restricted to cases of the type in figure 
6. It is therefore assumed that p = 0(1) and E Q 1. For this case the time to establish 
a steady state may be estimated to be O(s4) .  The thickness of the sediment layer is 
then O ( 3 ) .  

It is assumed that the dependent variables possess expansions in E of the following 
form on the short timescale: 

The system (4.4) is written in characteristic form and the expansions (4.5) are 
introduced. This yields expressions for ql and q2 along the characteristic curves of the 
system. For this system of two unknowns there are two families of characteristic 
curves, labelled the A- and the B-family. The shapes of these curves are obtained as 
expansions in E according to: 

Here xi.. .zh as well as 7:. . .q: and time are functions of the parameters a (along an 
A-characteristic) and b (along a B-characteristic). 

The procedure for solving (4.4) by the expansions ( 4 4 ,  (4.6) is lengthy and not 
trivial. For the sake of brevity and clarity, it is omitted here. The details of this 
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calculation will be presented elsewhere. However, to bring about a greater qualitative 
understanding of the filling process, the result is given. 

The solution is obtained in implicit form. The unknowns ql,q2 are calculated as 
functions of a, b along with x,, x,. Substitution of the expansions (4.5), (4.0) into the 
equations on characteristic form gives that ql is determined, within an error O(s2), 
along a characteristic of the A-family, i.e. as a function of a alone. Similarly q2 is 
determined on B-characteristics, as a function of b alone. The solution for ql is, 
expressed in this form: 

(4.7a) 

(4.7b) 
(4.7 c) 

(4.8a) 

here 

X g ( b )  = x!i+"(qi-&+&) +O(E2), (4.8b) 
(4.8~) t(b) = tBi + b ; 

dl = - 38(a:)2(1 -q!)(1 + 3q3, 
&l = -~(l-(q~)2)+08q!(l--rl!)2(1 +r32, 
d 2  = -08qw--11;)2(1+t!). 

The indices i denote initial values. These me obtained from the boundary and 
initial conditions (4.1), (4.2). To plot the solution, ql say, as a function of x at a 
certain instant, the parameter a is expressed in t and eliminated from (4.7). The 
interface is then obtained as a function of x at the chosen instant by plotting q1 
versus x, for different initial positions tM, xA, of the characteristic curve. As the 
initial position is varied over the boundary of the (2, t)-plane, (ql, x,) is a parametric 
representation of the interface shape. 

As seen from the numerical calculations the solutions contain shocks. These must 
be inserted whenever a characteristic from one of the two families intersects another 
curve of the same family. As remarked above, ql is determined along A-characteristics 
and q2 along B-characteristics to this order of approximation. Thus when two curves 
from the A-family (say) intersect, a discontinuity in q1 is inserted. Since q2 is not 
affected by the A-characteristics to this order, no discontinuity is required in q2. The 
speed of the ql-discontinuity is then determined by conservation of clear fluid (or 
sediment if the shock is in 9,) over the discontinuity, just as in claseical kinematic 
wave theory (see e.g. Amberg et al. 1980). Thus an ordinary differential equation 
(involving the solutions (4.7), (4.8)) can be formulated for the position of the shock 
and solved numerically, 

In figure 8 the interfaces obtained in this manner are shown for a case with 
Q = -0.8, 8 = &, s = 0.1 at two times, t = 2,lO. The dmhed curves in the same graph 
show the result of a numerical calculation. The agreement is satisfactory. 

Figure 9 shows the two families of characteristic curves (xA ,xB)  in an x versus 
td diagram on the long timescale. Curves of the A-family, corresponding to the 
evolution of ql, enter from the inlet at x = 1 and move rapidly up the channel (to the 
right). When plotted on the long timescale the A-characteristics are almost parallel 
to the x-axis. 
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X d 
FIQIJRE 8. Comparison between -, the analytical solution and ----, the numerical for a case 
with co = 0.091, B = A, Q = 0.8. Time is t = 2.0 in the upper graph and t = 10.0 in the lower. 

FIQIJRE 9. The characteristic curves on the long timescale t - €3 for co = 0.091, B = &, Q = -0.8. 
The A-family of characteristics is deflected to the right and the B-family to the left. 
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0 
FIGURE 10. The characteristic curves on the short timescale for c,, = 0.091, ,9 = &, Q = -0.8. 

The A-family is deflected to the right and the B-family to the left. 

Characteristics of the B-family, related to the evolution of the sediment layer, 
originate on the x-axis. When the initial shock (the upper end of the suspension 
region propagating up the channel initially) has passed, these characteristics are 
deflected down towards the outlet (to the left). When viewed on the long timescale 
the shock formally passes through the channel instantaneously. 

In figure 10 the characteristics are shown on the short timescale. Due to the 
boundary condition vl = 1 at x = 1. there are A-family characteristics starting on the 
t-axis running up into the channel. The initial condition v1 = - 1, is propagated along 
the straight characteristics starting at t = 0. A shock is formed at x = 1, t = 0 when 
the A-characteristics starting at  x = 1 intersect the straight characteristics carrying 
the initial value. This shock propagates up the channel until its strength has decayed 
to zero at  t = 2.88. 

In figure 10 the B-characteristics carry the initial condition v2 = - 1 straight up, 
across the shock path starting at x = 1, t = 0. When this shock has passed, the 
sediment layer starts to build up and the B-characteristics first make a slight bend 
upwards (to the right) and are then deflected down towards the inlet. Due to the 
slight bend upwards, the rightmost B-characteristic will become tangent to the 
initial shock at a certain instant. A t  x = 1, the boundary condition v2 = -1 will 
initially cause B-characteristics to enter the channel from the inlet. A t  t = - &/( 16s) 
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these characteristics intersect and a shock is formed a small distance in from x = 1. 
This shock moves down and leaves the channel at t = 2.56 for the parameter values 
in figure 8. From this instant on, the B-characteristics leave the region at z = 1 and 
rz + -1 there. 

This shock is the same as the one observed in the discussion of the numerical 
results. The time t = 2.56 is when the boundary condition (4.2) is switched from 
prescribing both rl and qz at x = 1 to prescribing only ql. 

5. Conclusions 
Effects of sediment on the time dependent gravity settling of a suspension in a 

narrow inclined container has been studied. Two cases were investigated. In batch 
settling, where the container is closed and is initially filled with a suspension of 
uniform concentration, the sediment has only a minor qualitative effect on the flow. 
The thickness of the sediment layer is always < O(c,). The evolution of the regions 
occupied by suspension and clarified liquid are qualitatively similar to those 
obtained when the sediment is neglected. One additional region is present at the 
bottom end, where the sediment is eventually collected. Also an additional shock 
appears. 

The second problem considered is the filling (with suspension) of an open channel 
that initially contains clear fluid. The suspension enters the channel at the lower end. 
In this problem two timescales appear. For times of order unity, the suspension 
reaches over most of the channel length and the interface between suspension and 
clear fluid is approximately steady. On this time scale, the sediment layer is thin, 
< O(c,). The sediment layer grows on the 0(1) timescale and reaches its steady state 
on a timescale O(c,-$). In the steady state, the thickness of the sediment layer is 

Depending on the relative importance of buoyancy and imposed flow rate, the 
sediment may leave the channel a t  either the inlet or the outlet (or both). If 
buoyancy is important, as it will be for instance in a wide enough channel, the flow 
in the heavy sediment layer is directed downwards, opposite to the imposed net flux. 
The sediment will leave the channel at the inlet. However, if the density difference 
is less important, as it would be in a slightly narrower channel, the imposed flow is 
sufficient to drag the sediment upwards at  all times. The sediment then leaves the 
channel at  the outlet. The former possibility appears if % ei and the latter if the 
opposite is true. 

A complication of the mathematical model is that the characteristic velocities of 
the system of hyperbolic equations for the interfaces are complex for certain 
combinations of interface positions. This is due to the presence of a weak instability 
for long wavelengths. The growth rate of this instability is small. Also, unstable 
combinations of interface positions occur only rarely. It is therefore judged that the 
flow is still described reasonably well by the hyperbolic system that was used. 

O(C,i). 
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Appendix 
In this appendix we discuss the restrictions imposed by assuming that suspended 

droplets coalesce with the sedimenesuspension interface, but not to any significant 
degree with each other in the interior of the suspension. Coalescence is to a large 
extent characterized by the finite contact time t ,  required for a droplet to merge with 
a liquid-liquid interface, or two droplets to merge into a single drop. The contact 
time depends (among other things) on the force D that drives the droplet towards the 
interface (Liem & Woods 1974; Hartland & Vohra 1980). 

For a suspended droplet that approaches a liquid-liquid interface (such as the 
surface of the sediment layer), t, has been measured by, among others, Chen, Hahn 
& Slattery (1984). They gave an empirical correlation which can be used here to 
estimate the coalescence rate at the suspension-sediment interface. The dropdrop 
coalescence of small droplets in the interior of a sheared suspension seems to have 
been less studied. (The study of Ramamoorty & Treybal(l978) is not applicable here 
since the droplet Reynolds number was larger than unity, from 30 to 4000, there.) 

As noted by Chen et al. (1984), the hydrodynamics of the approach of a drop to 
another drop show many similarities with the approach to a liquid interface. We will 
thus use their correlation to obtain an estimate of the coalescence rate in the bulk of 
the suspension. From dimensional arguments we estimate the force D between two 
drops that collide in the sheared suspension to be D N paU,, where U, is the relative 
velocity (a /h )  U N (al/h2) Us. Here U is the typical flow velocity, U ,  is Stokes settling 
velocity (see 2.3), a is droplet radius, 2h channel width, 1 channel length and p the 
viscosity. Two drops are assumed to coalesce only if they are in contact during a time 
longer than that given by t , .  Thus it is required that t ,  > h/U = h2/(1Us). Using the 
estimate of the interdrop force D derived above, substituted in the expression for 
t ,  given by Chen et al., we obtain the inequality on the right of the following two 
inequalities : 

Here y is the surface tension, Ap the density difference, c the volume fraction of 
droplets, g = 9.81 N/m2 and B = Nm2, a parameter characterizing the 
London-van der Wads forces. 

The inequality to the left is derived from the requirement of a sufficiently rapid 
coalescence rate at the suspension-sediment interface. In order to have a sharp 
interface at the sediment surface, the number of droplets that can coalesce with the 
sediment per unit time and area must be larger than the number that are deposited 
on the interface. Otherwise a foam-like layer will appear instead of a liquid-liquid 
interface. 

a, h and 1 in the right member of (A 1) are not independent. The requirement that 
a drop should be convected over a large part of the length of the channel before it 
reaches the lower plate (b z 1) implies that a' - (h3/l) (3c/16). Using this, the right 
member becomes 

2.45*8 a1 = 2 . 4 5 ( t r ( g y .  

This is certainly smaller than the left-hand side of ( A l )  for the slender vessels 
considered here, even for a volume fraction of order one. Thus the double inequality 
(A 1) is satisfied by a range of values of the parameters pertaining to surface tension 
and London-van der Waals forces in the middle member of (A 1). 
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